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Abstract: As a result of the resolution of the armed military conflict on the territory of Ukraine on February 24, 2022, 

the agricultural infrastructure of the latter was marked by large-scale destruction. Thousands of hectares of 

fields, the harvest from which previously provided both domestic and world needs, were mined, destroyed, 

damaged by artillery shelling, explosions and movements of military equipment. To restore the affected areas 

to ensure food security of Ukraine and the world, the state government, with the support of international 

organizations, must correctly distribute financial resources between affected landowners and farmers. For 

this, there is a need for accurate identification of war-affected territories. This task can be effectively 

performed using remote sensing data. In this work, damage to agricultural fields due to military operations is 

searched for by calculating the relative difference of the vegetation indices based on Sentinel-2 satellite data. 

Cloud-free composites of normalized difference vegetation index (NDVI) are compared for the nearest period 

before and after active hostilities in a specific area (dates and locations are obtained from the ACLED source). 

Pixels whose relative difference exceeds a given threshold are considered damaged. The survey of the 

country's territories was conducted from February 24 to September 25, 2022, dividing the dates into biweekly 

periods. According to the results of the research, such damage to agricultural fields as craters from explosions 

and shelling, traces of machinery, burnt fields, etc., were found. The relative difference between the minimum 

and average values of vegetation indices in the affected areas averaged 25% versus 15% for the minimum 

period before and after the lesion. The detected damaged areas were validated using ACLED data. It was 

determined that more than 50% of the total number of areas identified as damaged were located within a 

radius of up to 5 km from the zone of combat activities.

1 INTRODUCTION 

After the invasion of the enemy troops of the 
Russian Federation on the territory of Ukraine on 
February 24, 2022, a large part of the country was 
damaged, including not only cities and important 
infrastructure facilities, but also agricultural fields. 
In the territories where active hostilities are taking 
place, most of the agricultural land is mined and 
unsuitable for growing products. This was a big 
blow both for the agro-industrial complex of 
Ukraine and caused a shortage of food products on 
the European markets, because Ukraine was one of 
the leading exporters of agricultural products to 
Europe for decades in a row. 

To mitigate the negative effects of the war on 
the agricultural sector and ensure food security, the 

government of Ukraine and the international 
community decided to allocate funds for the 
restoration of damaged agricultural lands. To do 
this, farmers whose lands were affected were asked 
to fill out questionnaires, and tens of thousands of 
landowners applied for compensation. However, it 
is not known for sure which areas were exactly 
affected by shelling and explosions, because not all 
farmers accurately declared the amount of their 
losses and the area of damage, and some did not 
declare at all. In order to properly distribute the 
allocated funds, the government needs reliable 
information and a thorough inspection of the 
condition of the fields. It is physically impossible 
to carry out this task in the usual way, by carrying 
out an actual survey of the territories, due to the 
excessively large area of land, constant hostilities 
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and occupation. In addition, this is an irrational use 
of human and material resources. 

However, it is possible to solve the problem of 
detecting damaged areas using remote sensing data 
[1], [2]. Satellite data allow to identify land use and 
cover/land use changes using machine learning 
models [3]. The main advantage of providing 
remote analysis is safety. In article [4] authors 
created a framework that can be used to estimate 
the damage during the ongoing war and get 
information for restoration planning. As data were 
used Surface reflectance (SR) images from the 
Landsat-8 Operational Land Imager and several 
random forest algorithms were used for extracting 
needed information. As feature variables are used 
several indexes such as NDVI, MNDWI, NDBI, 
BSI. In work [5] authors tried assess damages using 
several types of optical images and SAR data. 
Multiple cities in the Kyiv region were chosen as 
study areas. All process of investigation contains 4 
stages for both Sentinel-1 and Sentinel-2 data [6]. 

Also, according to the previous experience of 
world scientists, remote sensing data from 
satellites of medium and high spatial resolution are 
successfully used to analyze time series of 
vegetation indexes [7], [8], detect land degradation 
[9], monitor land use [10], predict land yield and 
productivity, records of fires, drought [8] and 
floods, etc. Satellite missions that provide open 
data for tracking over the territory of Ukraine are 
Landsat-8 (30m) and Sentinel-2 with a spatial 
resolution of 10m (data available since 2014). 

Using indices calculated from satellite data, in 
particular the NDVI vegetation index, it is possible 
to detect abnormal changes in land cover that have 
occurred within a short period of time [11], and 
record a sharp decrease in plant growth rates or a 
drop in the amount of vegetation. These anomalies 
are usually provoked by weather phenomena, such 
as hail [7], [12], for example. However, for 
Ukraine, the changes caused by military actions 
can be detected by analyzing the time series of 
vegetation indexes, in particular NDVI [13]. The 
application of the technique of comparing NDVI in 
a fixed territory on specific specified dates can help 
to build an automatic recognizer capable of pixel-
by-pixel identification of craters from bomb 
explosions, eruptions from artillery shelling, tracks 
from tank tracks, other military equipment, etc 
[14]. 

Thus, the topic of this work is the development 
of an automated tool for the identification of 
agricultural fields damaged as a result of military 
actions based on remote sensing data for the 
analysis of NDVI and spectral channels. 

The main purpose of the paper is the accurate 
detection of damaged areas on the agricultural 

fields at the pixel level and an adequate assessment 
of the severity of damage. 

The identifier developed in this way will make 
it possible to adequately assess the consequences 
of the war in agricultural area and will help to 
correctly allocate the budget for the restoration of 
the functioning of the agrarian industrial complex 
of Ukraine. 

2 DATA AND MATERIALS 

Data from a wide-area mission with high resolution 
(10m) and multispectral imagery supporting the 
Copernicus Land Monitoring study, Harmonized 
Sentinel-2 MSI level A2 were used to calculate the 
vegetation index and analyze spectral channels. The 
images of the collection contain 16 spectral bands. 
For the study, vegetation index NDVI was calculated, 
as well as four bands (Red, Green, Blue, and NIR). 

Due to overcast areas during numerous satellite 
surveys, in order to obtain reliable data, there was a 
need to clear images from clouds and build 
composites in the shortest possible time. 

An open source of information - the Armed 
Conflict Locations and Events Data (ACLED) project 
[15] was used to select appropriate dates for the
construction of composites before and after potential
field damage in order to detect damage to territories
by comparing the values of vegetation indexes
before and after damage. ACLED collects
information on the dates, locations and types of all
recorded events of political violence and protests
worldwide, including information about the
territories of Ukraine where active hostilities are
currently taking place. Starting from February 24, the
time was divided into biweekly intervals (periods),
for each of which the damaged areas were determined
(Figure 1). The parcels deliniation polygons
developed by the Sinergise company for Ukraine
within the EO4UA [16] initiative was used as field
contours.

Figure 1: ACLED information about military action in 

Ukraine for 15 biweekly periods from 24th of February. 
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Thus, we selected the closest possible time period 
before the military attack, the date and location of 
which was provided by ACLED, and the closest 
period after the military attack to construct a 
relatively cloud-free satellite data.  

3 METHODOLOGY 

3.1 Damaged Detection Based on 
Comparison of NDVI Distribution 

The method of detecting fields damaged by military 
actions on the territory of Ukraine is based on a pixel-
by-pixel comparison of NDVI values during the 
narrowest time interval before and after the impact. 
NDVI – is a commonly used vegetation index, 
calculated by near infrared (NIR) and infrared (RED) 
bands of satellite observations with the (1): 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑅𝐸𝐷

𝑁𝐼𝑅+𝑅𝐸𝐷
  

After obtaining the indicators of the vegetation 
index according to two composites - before and after 
military activities on a specific territory on a regional 
scale - the relative difference of NDVI in percentages 
is calculated according to the following (2): 

𝑑𝑁𝐷𝑉𝐼𝑡 =  
𝑁𝐷𝑉𝐼𝑡+1−𝑁𝐷𝑉𝐼𝑡

𝑁𝐷𝑉𝐼𝑡
∗ 100%,

where: 𝑑𝑁𝐷𝑉𝐼𝑡 - is the relative percentage difference
of NDVI at point t; 𝑁𝐷𝑉𝐼𝑡– NDVI value before
potential damage to the territory at point t; 𝑁𝐷𝑉𝐼𝑡+1-
NDVI value after potential damage to the territory at 
point t. 

To calculate the NDVI only within the boundaries 
of agricultural crops the land cover classification map 
of 2022 was used. The next step is to set the maximum 
permissible (threshold) value of the relative 
difference of NDVI in order to filter out normal 
changes in vegetation cover and detect anomalies. To 
remove non-military NDVI changes, we thresholded 
within a field the number of pixels with a large NDVI 
drop of 60% of the field size using vector field 
contours. The previously given vector contours of the 
fields were reduced by 2 pixels along the perimeter 
inside, in order to avoid fixing the changes of NDVI 
in the territories between the fields. 

3.2 Damaged Detection Based on 
spectral Values Distribution 

Comparing pre-event and post-event satellite data 
shows good results in damage monitoring, but there 
are often situations where no pre-event satellite data 
is available, or it is all covered by clouds. For such 

cases, another algorithm has been developed that uses 
only one image, or rather, its spectral channels 
separately.  

This algorithm works at the level of each 
individual field within the contours created by the 
Sinergise company. To begin with, the NDVI 
indicator is calculated within the contour of the field 
to determine the state of vegetation according the (1). 
In case the vegetation is low (NDVI < 0.3), Green and 
Blue spectral channels are used to damaged territories 
detection. Otherwise, the Green and NIR channels are 
used. Further, within each field, the distribution of the 
values of the corresponding spectral channels is 
analyzed and those of them that are not statistically 
average are cut off. In particular, for fields with high 
vegetation, the following (3) is used:  
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and for fields with low vegetation, the following (4) 

is used: 
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where μ - mean channel’s value at field level, σ - 

standard deviation of channel’s value at field level. 

The general scheme of the developed algorithm is 

shown in the Figure 2. 

Figure 2: The general scheme for finding damage from 

bombs and missiles. 

To confirm the assumptions about the possible 
damage to the territories, histograms of the 
distribution of NDVI in the cadastral boundaries of 
the target field are constructed according to the 
available composites in order to estimate the 
dispersion of the vegetation index and the deviations 
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of the minimum values of NDVI from the average 
value within the field before and after damage. 

4 THE RESULTS 

4.1 Damaged Fields Detection 

With the help of calculations of the relative difference 
of the NDVI, we were able to identify damage from 
artillery fire (Figure 3a), as well as traces of the 
movement of equipment, burned fields and other 
numerous damages (Figure 3b). 

a) 

b) 

Figure 3: a) Damages detected based on relative difference 

of NDVI, Kherson region, (May 9 - May 2022). b) Detected 

damaged fields based on spectral channels, Donetsk region 

(02 July 2022). 

To check the distribution of NDVI within the 
identified as damaged fields, histograms were 
constructed, an example of which is shown in 
Figure 4. The relative difference of the minimum and 
average NDVI in the affected field from the example 
(Figure 4b) was about 25% against 17% in the same 
field before the injury. The relative median difference 
between the minimum value of affected and uninjured 
areas on the image in which the damage was recorded 
was 13% on average (Figure 4c). In general, a similar 
situation was observed in other fields. 

For comparison with the relative difference of 
NDVI in the unaffected area, we constructed a 
histogram of the relative difference of NDVI in the 
nearest neighboring undamaged field for the same 
date (Figure 5).  

a) 

b) 

c)

Figure 4: Distribution of NDVI within the field. a) before 

the event of potential damage (June 1 - June 5); b) after the 

event of potential damage (June 6 - June 8) damage.; c) The 

difference in the distribution of NDVI before and after 

damage. 

As can be seen in Figure 5, the largest difference 
of NDVI on an intact field does not exceed 0.07, 
while on a damaged field it exceeds 0.26. 

Figure 5: The difference of NDVI on the damaged and 

undamaged field. 
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4.2 Сomparison of Automatically 
Recognized Damages and Damages 
Detected by the Experts 

To validate the method of automatic field recognition, 
we conducted a visual inspection of the damaged 
areas, using data on the areas and dates of active 
hostilities for orientation from the ACLED source. To 
improve the quality of the verification, we will choose 
the 8th period of the war (6-19 June) as the period of 
active vegetation and the Donetsk region as the region 
of active hostilities.  

According to the results of a comparison of 
automatic and "manual" methods for recognizing 
field damage (Figure 6), it was found that the method 
based on the calculation of the relative difference of 
the NDVI identifies many more fields than can be 
seen on a three-channel satellite image (Figure 7) (on 
cloudless composites, 2143 fields were automatically 
identified against 376 fields visually assessed as 
damaged). 

Figure 6: Comparison of fields identified as damaged by an 

automated method and fields marked as damaged by a 

"manual" method. Donetsk region, 8th period of the war 

(June 6 – June 19). Yellow polygons are manually marked 

fields. Blue polygons are fields recognized as damaged 

based on data on the relative difference of NDVI, Brown 

polygons are fields recognized as damaged by "manual" 

and automatic methods. Green dots show combat zones. 

At the same time, the identification results 
coincided only for 193 fields, which is about 48% of 

visually recognized as damaged fields and 9% of the 
number of fields identified as damaged based on the 
relative difference of NDVI. Such a large difference 
in results may be explained by clouds, normal 
seasonal changes in NDVI, tillage, weather 
conditions, etc., which may have influenced the 
strongly negative relative difference in NDVI. On the 
other hand, there is the problem of the imperfection 
of the human factor, when the fields could not be 
recognized as damaged or, on the contrary, the 
surviving areas were marked as damaged. Therefore, 
for accurate damage recognition results, it is worth 
combining both methods, first calculating the relative 
differences of the NDVI, and then re-viewing the 
marked fields on the RGB satellite image. 

Figure 7: Comparison of fields recognized as damaged 

automatically (blue color) and manually (green color). 

Fields recognized as damaged by both methods are marked 

in brown. Red pixels describe the relative difference of 

NDVI. 

4.3 Validation of Detected Damages 
by Experts 

To check the accuracy of the visual "manual" method 
of identifying the fields as damaged, the obtained 
results were compared with the combat information 
provided by ACLED (Figure 8). For clarity, we 
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selected the 8th observation period as a period of high 
biomass growth rates during summer vegetation. 

As can be seen from Figure 8, the damage 
detected using the satellite monitoring method 
coincides with the official data on the attacked 
territories. Particularly damaged areas were found in 
the Donetsk and Herson region (Figure 8). Thus, the 
method makes it possible to estimate losses even in 
occupied territories. 

On the graph in Figure 9 shows the distribution of 
the number of damaged fields by the distance from 
the official points of military shelling for the 8 period 
of hostilities. 

As we can see, in a small radius from the combat 
zone, the percentage of damage is higher. More than 
half of the damaged fields are located in a 5-kilometer 
zone from the official shelling areas, and about a 
quarter - in a 10-kilometer zone. In addition, the 
severity of attacks can be retrospectively estimated 
from the indicators of detected damage. Therefore, 
according to our estimates, the most affected areas 
were recorded in the 9th period of the war (Jun - 3 Jul, 
75.4% in a radius of up to 5 km) and 11 (18 Jul - 31 
Jul, 64.6% in a radius of up to 5 km). As a result of 
all periods, total damage in Ukraine is 54.3%, 27.8%, 
9.3%, 3.8%, 4.8% in radii up to 5 km, 10 km, 15 km, 
20 km, respectively. 

Figure 8: Geospatial location of identified damaged fields 

relative to official claims of military strikes for June 6-19, 

2022. Examples of damages. Left - damaged fields Near 

Severodonetsk, Donetska oblast (June 6-19, 2022); Right - 

damaged fields near Herson city (June 6-19, 2022). 

Figure 9: The distance of the damaged fields from the 

official locations of shelling for period 8 (June 6 – June 19, 

2022). 

5 CONCLUSIONS 

As a result of this study, a method was developed for 
finding agricultural fields damaged as a result of 
military actions based on the relative difference of the 
NDVI index before and after active military actions 
in a specific territory and based of spectral channels. 
The method allows identification of point lesions of 
agricultural lands, such as explosions from bombs, 
traces of military equipment and the consequences of 
fires. 

Damaged territories across Ukraine, including 
occupied lands, from the beginning of the armed 
conflict on February 24 to September 25, 2022, were 
identified. According to the results of the validation 
of the fields identified as damaged, it was established 
that the marked territories coincide with official data 
on the territories of military operations and are mostly 
located within a radius of up to 5-10 km from the zone 
of combat activities (up to 75.4% for the 9th period of 
the war, 20 Jun - 3 July). It was also found that 
Ukraine suffered the greatest area of damage during 
the 9th and 11th periods of the war (June-July). 

As a next step it worth to test the proposed method 
for different stages of vegetation period and to 
discover informativeness of other indexes for 
detection the damages in the agricultural fields.  

Thus, the method developed in this study to 
identify damage to agricultural fields due to war can 
be practically applied to help the government to 
accurately identify damaged land. This will provide 
an opportunity for the government of Ukraine and 
world representatives to correctly distribute financial 
resources among the affected landowners for the 
successful and effective restoration of the agricultural 
and industrial complex of Ukraine. 
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